
1

Workflow Composition: Semantic
Representations for Flexible Automation

Yolanda Gil

1.1 Introduction

Many different kinds of users may need to compose scientific workflows for
different purposes. This chapter focuses on the requirements and challenges
of scientific workflow composition. They are motivated by our work with
two particular application domains: physics-based seismic hazard analysis
(Chapter 10) and data-intensive natural language processing [1]. Our research
on workflow creation spans fully automated workflow generation (Chapter 23)
using artificial intelligence planning techniques for assisted workflow composi-
tion [2, 3] by combining semantic representations of workflow components with
formal properties of correct workflows. Other projects have used similar tech-
niques in different domains to support workflow composition through planning
and automated reasoning [4, 5, 6] and semantic representations (Chapter 19).
As workflow representations become more declarative and expressive, they
enable significant improvements in automation and assistance for workflow
composition and in general for managing and automating complex scientific
processes. The chapter starts off motivating and describing important require-
ments to support the creation of workflows. Based on these requirements,
we outline the approaches that we have found effective, including separat-
ing levels of abstraction in workflow descriptions, using semantic representa-
tions of workflows and their components, and supporting flexible automation
through reuse and automatic completion of user specifications of partial work-
flows. These are all important areas in current and future research in workflow
composition.

1.2 The Need for Assisted Workflow Composition

Scientific workflows typically comprise dozens of application components that
process large data sets. The data sets are often sliced into smaller sets to
be processed concurrently, often resulting in the execution of thousands of



2 Yolanda Gil

jobs. Figure 1.1 shows a sketch of a partial workflow for machine translation.
It illustrates how a data set is first divided into subsets, how these are pro-
cessed in parallel by the same sequences of jobs, and how the final results are
assembled in the final stage.

Fig. 1.1. Scientific workflows may be complex and often involve parallel processing
of data sets. This figure shows an example where a data set is split up in the early
stages, its subsets are processed concurrently, and final results are compiled in the
later stages.

1.2.1 Unassisted Workflow Composition and Its Limitations

A common approach to creating workflows is to develop ad hoc scripts that
handle the iterative nature of sets of jobs and can generate workflow variants
through global variables. They also specify the data locations and execution
locations necessary for each job. The data have to be moved to the locations
specified, and the executables must be set up in the appropriate locations. The
scripts also take care of generating the metadata associated with the workflow
products, often using naming conventions to differentiate among alternative
configurations and executions. As an alternative to scripts, workflows may be
created by hand with a text editor and updated with a copy–edit process.

These approaches have severe limitations in terms of usability and scale.
Workflows can only be created by users who are very familiar with the applic-
ation components used in the workflow, the execution environment, and the
scripting language. Errors abound, as with any manually managed process,



1 Workflow Composition 3

and users need to be able to understand error conditions and repair failures.
Extending the size of the workflows to include new models has cascading ef-
fects that have to be managed manually, making it impractical unless the
additions were anticipated in advance.

Usability and scale turn out to be crucial requirements for many scientific
disciplines. We motivate the requirements for scientific workflow composition
with two application domains that we have used in our work and are repre-
sentative of the requirements we see in other disciplines.

In order to simulate potential earthquakes, a workflow for seismic haz-
ard analysis combines physics-based models including stress models that hy-
pothesize the distribution of cumulated stress over fault systems given con-
tinental drift and the stress in other faults, fault rupture models that forecast
potential earthquake sources in a fault system, wave propagation models that
simulate the propagation of a seismic wave in a 3D Earth volume, site response
models that predict how a seismic wave will be amplified at a certain location
based on its soil type, and structure deformation models that simulate the ef-
fect of seismic waves in a man-made structure such as a building or a bridge.
These models can be used today by the scientists who developed them, but
ideally the users would include other scientists who want to use, extend, or
validate the aggregate models. In addition, the models should be accessible
to a wider range of users, such as engineers designing structures supposed to
withstand ground motion to a reasonable degree, graduate research assistants
doing advanced projects on the sensitivity of the models to certain controlled
variations, and scientists in related disciplines.

Natural language researchers are developing data-intensive statistical train-
ing techniques to create language models useful for automatic summarization,
machine translation, and document Indexing. A wide variety of models can be
found to address different aspects of language processing, such as lexical ana-
lyzers, stemmers, part-of-speech taggers, syntax-based parsers, semantic pars-
ers, translation rules, and so on. To put together a machine translation system
requires assembling an entire suite of such models to process and parse the
original language sentence, map it to the target language, and smooth out the
output to make it as fluent as possible. Each of the models has to be trained,
perhaps on a different body of text, depending on the topic of translation,
before the actual translation is done on the original sentence. New models are
developed constantly by different groups around the world, and variations of
combinations of models are explored by different research groups for different
purposes. Because better performance is invariably obtained with larger sets
of training data, there is increased interest in workflow environments that ex-
ploit high-end computing and large data and storage management facilities.
Sharing of data and models is often done informally across research groups.
Flexible workflow composition and execution frameworks would support the
rapid development and validation of novel approaches and models.

In summary, although it is possible to create and manage workflows of
considerable size in an unassisted manner, there are severe challenges and



4 Yolanda Gil

practical limitations in terms of usability and scalability that can only be
addressed by end-to-end workflow systems that assist users with the creation,
execution, and management of workflows.

1.2.2 Workflow Composition Scenarios

The following are representative scenarios for workflow composition illustrated
in these two application domains. These scenarios motivate the requirements
for workflow composition discussed in the next subsection.

Running a Common Kind of Analysis with a New Data Set

A common kind of wave propagation simulation takes a fault rupture and a
model of the corresponding Earth volume’s characteristics and runs a physics-
based anelastic wave propagation model over that volume to generate 2D or
3D seismograms. This kind of analysis is done routinely by Southern California
Earthquake Center (SCEC) scientists well versed in such physics-based wave
propagation models, but a scientist in Seattle may want to apply the same
analysis to data for the Pacific Northwest area. The workflow structure is
essentially the same, but the input data to be used are different. The Seattle
scientist will not be able to compose the workflow from scratch but could
reuse the basic workflow structure. In a machine translation project, the same
workflow can be tried out with a new body of text or a new language.

Creating a Variant of a Type of Analysis

A scientist in Santa Barbara who creates in her research a new model of a
fault in Southern California would want to test this model with typical wave
propagation simulation codes, except replacing the usual Earth volume model
by one that incorporates hers. In this case, the scientist from Santa Barbara
does not need to compose a workflow from scratch but instead could reuse
the commonly used workflow and modify it slightly by substituting one of
the components. In a machine translation project, a scientist may try out
a new parser her group has developed and investigate its effect on the final
translation quality.

Specifying only Critical Aspects of the Analysis

A scientist in Boston may be interested in simulating wave propagation us-
ing finite-difference models, but any of the finite-difference models would be
acceptable. This illustrates that it is possible to describe categories of work-
flows based on abstract classes of models. The new workflow would not be
composed from scratch, but by selecting one of the instances of the abstract
class of models mentioned in the workflow. A machine translation researcher
working on improving the fluency of the output will run workflows with a
part-of-speech tagger but may have no preference regarding the kind used.



1 Workflow Composition 5

Running a Complex Analysis Composed of Common, Simpler Ones

An engineer in Palo Alto would like to simulate the effect of certain fault rup-
tures on his design of a freeway overpass at a location close to the San Andreas
fault. This may require composing a workflow by combining two workflows:
one designed to simulate the effect of certain ground motions on the overpass
structure and another one designed to simulate the wave propagation from the
fault ruptures to the site of the overpass. In a machine translation project,
the output of translation may be used for document summarization, where
the overall processing would be obtained by combining the two respective
workflows.

Specifying a New Type of Analysis

A scientist may create a new model for wave propagation that runs very
efficiently if coupled with certain types of models of an Earth volume. This
scientist would have to compose a completely new workflow out of a new set of
models by specifying step by step what models are to be used and how they
need to be combined. A machine translation researcher may create models
that represent a new approach to word-by-word translation and use them to
create a new kind of workflow.

1.2.3 Requirements for Workflow Composition

The scenarios above illustrate that workflows have many users and uses that
need assistance in creating workflows. From graduate students to experienced
scientists, scientists with varied needs and expertise may need to conduct
workflow analyses using the same underlying models and data. Engineers or
scientists in other disciplines may benefit from using the same models if they
are made accessible and easy to use within their own analysis process. The
degree of freedom and the amount of assistance and automation required dur-
ing workflow creation will be very different in each case. But ideally the same
underlying mechanisms should be used to manage the workflow composition
process.

Some of the scenarios above describe scientific exploration tasks. In those
cases, the scientist will always want to specify some aspects of the analysis
that are critical to their investigation, leaving it to the system to figure out the
rest automatically. The initial specification may include partial descriptions of
desired results, application components to be used in the analysis, input data
to be used in the computation, or all of the above. This requires an expressive
language that supports flexible descriptions of models and data. This may
require assisting users to provide a complete and valid initial specification
to ensure that all the pieces provided are mutually consistent and that it is
possible to create a full workflow from them. Once the initial user specification
is provided, it can then be automatically extended to form a complete workflow



6 Yolanda Gil

that can be executed. This requires a flexible workflow completion mechanism
since it will need to work from results back to what is required to generate
them, from input data down to typical ways to process them, or from models
and their requirements that need to be generated by adding other models to
the workflow and so on.

Most of the scenarios above do not require creating workflows from scratch.
Although in some cases step-by-step assembly of new workflows from indi-
vidual components is needed, workflows can often be created by reusing exist-
ing workflows with minimal adaptations. This is not surprising, given that sci-
entific exploration often involves repeated analysis with small variants or local
modifications. Workflow reuse also encourages the practice of well-established
methodologies captured in particular workflow specifications. The more com-
mon steps in the workflows used by different scientists to do similar analyses,
the more comparable their results will be. This argues for reusing workflow
structures as much as possible across research groups and across experiments
or analyses. Results that are obtained using well-established methodologies
should essentially be the products of well-known and easily identifiable work-
flows.

Workflow reuse involves two major aspects: retrieval and adaptation. Re-
trieval involves finding appropriate workflows in a library, which requires that
workflow repositories be organized and indexed thematically and hierarchi-
cally. Adaptation of workflows has a wide range of complexity. The less so-
phisticated a user is, the more he or she is likely to reuse entire workflow
structures. More advanced users will be familiar with details of the mod-
els and may venture to create variants of a previous workflow by adding or
replacing components. The simplest kinds of adaptation involve simple sub-
stitutions of input data. The workflow composition system should ensure that
the new data set is appropriate for the models included in the workflow. This
requires that each workflow be described in terms of the types of data for
which it is appropriate. More complex kinds of reuse involve substitutions of
specific components together with the addition of steps to generate the data
needed by the new components. Other steps needed by the old model may
no longer be necessary and need to be removed. Supporting this adaptation
process requires representing the characteristics and constraints of each model
and the ability to use those representations to check the overall consistency
of workflows. Checking the consistency and validity of workflows is even more
necessary when several existing workflows at a time are reused to create a
new workflow.

These scenarios also illustrate the need for describing workflows in terms
that are critical for the experiment while ignoring necessary but irrelevant
execution details. This necessary detail is needed to execute the workflow
and includes components that prepare and transform the data into formats
required by the models, move data to the locations where they need to be
processed or stored, and perform conversions to different metric or reference
systems. A workflow composition system should present workflows to users



1 Workflow Composition 7

at an appropriate level of abstraction. In addition, it should automatically
manage any steps in the workflow that do not involve experiment-critical
components.

In summary, there are three key requirements for assisting users in work-
flow composition. First, workflows must be described at different levels of
abstraction that support varying degrees of reuse and adaptation. Second, ex-
pressive descriptions of workflow components are needed to enable workflow
systems to reason about how alternative components are related, the data re-
quirements and products for each component, and any interacting constraints
among them. Third, flexible workflow composition approaches are needed that
accept partial workflow specifications from users and automatically complete
them into executable workflows. The next three sections discuss each of these
three requirements in turn.

1.3 From Reusable Templates to Fully Specified
Executable Workflows

Representing workflows at appropriate levels of abstraction is key to support
reuse and to manage the complexity and details involved in creating scientific
workflows. In our work we consider three stages of creation of workflows,
illustrated in Figures 1.2, 1.3, and 1.4. Each stage corresponds to a different
type of information being added to the workflow, namely:

1. Defining workflow templates that are data- and execution-independent
specifications of computations. Workflow templates identify the types of
components to be invoked and the data flow among them. The nature
of the components constrains the type of data that the workflow is de-
signed to process, but the specific data to be used are not described in
the template. In this sense, a workflow template is parameterized where
its variables are data holders that will be bound to specific data in later
stages of the workflow creation process. A workflow template should be
shared and reused among users performing the same type of analysis.

2. Creating workflow instances that are execution-independent. Workflow
instances specify the input data needed for an analysis in addition to the
application components to be used and the data flow among them. A
workflow instance can be created by selecting a workflow template that
describes the desired type of analysis and binding its data descriptions
to specific data to be used. While a workflow instance logically identifies
the full analysis, it does not include execution details such as the physical
replicas or locations to be used. That is, the same workflow instance can
be mapped into different executable workflows that generate exactly the
same results but use different resources available in alternative execution
environments.



8 Yolanda Gil

3. Creating executable workflows. Executable workflows are created by taking
workflow instances and assigning actual resources that exist in the exe-
cution environment and reassigning them dynamically as the execution
unfolds. Executable workflows fully specify the resources available in the
execution environment (e.g., physical replicas, sites and hosts, and service
instances) that should be used for execution. This mapping process can
be automated and ideally is incremental and dynamic. In an incremental
mapping scheme, only the initial workflow steps might be assigned to re-
sources, while later steps can wait until the execution of the initial steps
is finalized. The mapping should be dynamic so that when an execution
failure occurs, the assignment can be reconsidered.

The template shown in Figure 1.2 depicts a rule-pruning workflow for ma-
chine translation. This template corresponds to the workflow shown in Fig-
ure 1.1. Templates should specify the types of input data that they are able
to process. In this case, the template takes as input a plain text corpus and a
roster of kernel rules (generated by a different workflow). An instance can be
created simply by binding these two inputs to specific data. In Figure 1.3, the
input is specified as WSJ-2001 and KR-09-05. The specification of the work-
flow instance can be quite compact since it consists of a template identifier
and a set of bindings for its inputs. This compact specification can be turned
into a fully expanded instance, shown on the right-hand side of Figure 1.3 and
corresponding to the workflow in Figure 1.1. Executable workflows fully spe-
cify what needs to be executed, where, and in what order. They also include
data movement steps as required by the computations. In the example shown
in the figure, the initial and final stages may be performed in local machines,
while the most computationally intensive stages could be executed in a shared
resource (e.g., a cluster). The final results as well as some intermediate results
may be recorded in shared data repositories. An executable workflow, shown
in Figure 1.4, can be automatically generated from the workflow instance by
analyzing the execution requirements of each step and mapping them into the
particular data storage and computation resources available at the time of
execution.

While these different stages make useful distinctions, they are not meant
to be rigid. For example, a workflow template may be partially instantiated
in that some of its data type placeholders may already be assigned to existing
data. A partial instantiation can be used to specify an analysis of a data
set against a standard invariant data set. It could also be used to specify
parameter settings for some of the components of the analysis. The workflow
creation process needs to be flexible across these stages.

Reuse is greatly facilitated by distinguishing these different levels of ab-
straction, from generic reusable workflow templates, to specific data-processing
workflow instances, to execution-dependent workflows. Users can simply re-
trieve templates that are appropriate to their needs and specify the data to



1 Workflow Composition 9

Fig. 1.2. A workflow template captures the structure of the workflow in a data-
independent and execution-independent representation.

be processed. New types of workflows can be created by adapting or merging
existing templates.

Validation is also facilitated through this three-stage process. Workflow
templates can specify constraints on the types of input data that they can
process. In creating workflow instances, users can be required (and guided!)
to provide data that satisfy those constraints.



10 Yolanda Gil

Fig. 1.3. A workflow instance specifies the data to be processed by a workflow
template in an execution-independent representation.

Fig. 1.4. An executable workflow specifies where the data are stored and processed
and may include additional steps to move data as required for computation and
storage.



1 Workflow Composition 11

1.4 Semantic Representations of Workflows to Support
Assisted Composition

Figure 1.5 shows an overview of the kinds of ontologies that we use to rep-
resent workflows. We use the Web Ontology Language (OWL) [7], a W3C
recommendation that now has several widely available editors and reasoners
for efficient inference. Application-specific ontologies, shown in the middle of
Figure 1.5, include definitions of terms and relations that are useful to describe
different data properties in the domain at hand. These domain terms can be
organized in classes described in terms of their relations to other classes as
well as by their class-specific properties. For example, a class of data objects
defined for the machine translation workflow is “Kernel Rules.” This can be
a subclass of a more general class, “Translation Rules.” These domain terms
are then used to define the classes of data required for each component, as well
as the data they create. In our example, the definition of the component “Fil-
ter Rules” would state that one of its inputs is a file of type “Kernel Rules.”
Components can be organized by component types, also organized in classes.
For example, a generic class “Process Rules” may be defined as having at least
one input that is of type “Translation Rules.” Given this definition, the com-
ponent “Filter Rules” belongs to that more general class. Workflow templates
and instances can be specified by using these component classes and descrip-
tions. Since the output of “Filter Rules” is specified to be a set of “Transla-
tion Rules,” the file that results from the second component of the template
is of that type. All these application-specific ontologies can be specializations
of application-independent definitions, shown at the top of Figure 1.5. These
generic ontologies can describe the relationships between components, data,
and workflows, as well as their properties. At the bottom of the figure, ex-
ternal catalogs can be used as repositories of data, components, and executed
workflows. All these catalogs can be indexed by the ontologies, where any
metadata attributes would correspond to terms defined in the ontologies.

Semantic workflow representations support workflow composition in sev-
eral ways. First, the ontology definitions of classes and properties can be used
to check that newly created workflows are valid. In our running example, a
workflow instance may be noted to be invalid if KR-09-05 is not recognized
to be an object of type “Kernel Rules,” which may be either directly stated
in or deduced from the metadata attributes of KR-09-05. The consistency
of newly created workflow templates can also be checked against the defini-
tions in the ontologies. The second use of semantic workflow representations is
for retrieval from workflow libraries. Using ontology-based query languages, a
workflow template can be retrieved by providing a description of the features
sought. For example, one may search for workflows that take “Kernel Rules”
and include at least one component of type “Process Rules.” With this de-
scription, the template in Figure 1.2 would be found.

Semantic workflow representations allow a better integration of data man-
agement systems and workflow systems by supporting detailed descriptions of



12 Yolanda Gil

Fig. 1.5. Semantic workflow representations include application-specific ontologies
organized as specializations of generic application-independent definitions. The on-
tologies can be used to index repositories of data, components, and executed work-
flows.

the requirements of a given workflow. Data can be described in a workflow us-
ing metadata attributes to more or less detail. A workflow specification could
include intensional descriptions that describe the data required or extensional
descriptions that refer to specific data sets to be used. These descriptions
could be used to retrieve the data by matching the description against a cata-
log. The descriptions of the data could also prompt the automatic assembly or
generation of the data, perhaps by firing off another workflow. Note that these
representations can describe the data required or produced by a workflow at
different levels of abstraction, including regarding its format and storage. The
same data can be stored in alternative formats, such as a database, or per-
haps in a set of files, each structured either as a table, an XML structure, or a
labeled list. The same data may be replicated in different locations, perhaps
with alternative file breakdowns or directory structures. In some cases, data
formats have a major influence on the efficiency of the workflow, whereas in
other cases data formats do not affect the logical analysis in the workflow and
their handling and conversions may be completely abstracted away.

Rich metadata descriptions of intermediate or final workflow results can
be automatically created based on the representations of the template and
instance that generated them. This supports an important requirement of
scientific domains in terms of documenting how any data are generated and



1 Workflow Composition 13

what their properties are. It also supports automatic workflow completion, as
we explain in the next section.

In summary, semantic workflow representations can support workflow com-
position in several ways. The reasoners can use the ontologies and associated
definitions to ensure the consistency of user-created workflows. During work-
flow creation and retrieval, ontology-based query languages can be used to
find relevant workflows and components based on their properties.

1.5 Automatic Completion of Workflows

In our work, we have used search and planning algorithms from artificial intel-
ligence to design workflow completion and automatic generation algorithms.
The abstraction levels and the semantic representations discussed so far turn
out to be useful in supporting a more flexible framework for automatic com-
pletion of workflows.

Complete automation is desirable in the stage of creating an executable
workflow from a workflow instance. This is possible when the execution re-
quirements of the workflow components are specified, and the system can
query the execution environment to find what resources are available for ex-
ecution. Important challenges include optimizing the completion time of any
given workflow, considering resource assignment trade-offs across many work-
flows, and designing appropriate failure handling and recovery mechanisms.

Automation can also be used to complete underspecified workflow tem-
plates. Workflow templates are underspecified when they include abstract
computation descriptions to be specialized during workflow instance creation.
For example, a step in a workflow template may specify a class of component
such as “Gridding.” The specific gridding component to be used may depend
on the nature of the data processed by the workflow. Workflow templates
can also be underspecified in that they may be missing workflow components
that perform data formatting, conversions, and other steps that are not con-
sidered critical to the analysis done in the workflow. As we mentioned, these
are necessary ingredients of a workflow, yet the details of how these steps are
performed may be irrelevant to the experimental design and to the scientist.
Automatically adding these steps is possible when the format requirements for
experiment-critical components are declaratively specified and when the com-
ponent library includes appropriate components for doing the kinds of data
processing required. The kinds of data processing needed may not be known
until the data are specified and therefore would not typically be included in a
workflow template. Once input data are specified, new data-processing steps
can be added during workflow instance creation. Intermediate data products
may also need to be converted for consumption of a subsequent step. In some
cases, their format can be anticipated from the workflow template definitions
and the new steps can be added during workflow instance creation. However,
in other cases, the format of intermediate data products will only be known



14 Yolanda Gil

once they are created during execution, and in those cases the insertion of
data-processing steps will need to be interleaved with the execution process.

Full automation of the workflow composition process may be desirable for
some kinds of workflows and application domains. Given a description of the
desired data products, the task of creating a valid workflow from individual
application components can require full-fledged automatic programming ca-
pabilities. Automatic workflow generation is manageable in domains where ap-
plication components can be clearly encapsulated and described with detailed
specifications of the component’s outputs based on the properties of their in-
put data. These specifications must include criteria for component selection
and data selection when several alternatives are appropriate and where the
quality of the workflow results may depend on mutually constraining choices.
As an alternative to creating new workflows from scratch, fully automatic
workflow generation can also be achieved by reusing workflow templates. This
approach requires a library of workflow templates that reflects common anal-
ysis processes in the domain and is appropriately indexed according to the
requirements that will be provided at workflow generation time, be they the
desired results, the input data to be analyzed, or the types of components in
the workflow.

1.6 Conclusions

The scale and complexity of scientific applications challenge current workflow
representations and pose limitations on simple workflow composition tools
such as graphical editors or authoring environments with limited user assis-
tance. We have argued that workflow composition environments can greatly
benefit from (1) semantic representations of workflows and their components,
(2) workflow representations at different levels of abstraction, and (3) flexible
automation in completing user-provided partial workflow descriptions. These
novel capabilities can have broader implications beyond workflow composi-
tion in terms of increased automation and intelligent capabilities for workflow
management and execution.

Acknowledgments

This research was supported in part by the National Science Foundation un-
der grant EAR-0122464 and in part by an internal grant from the Information
Sciences Institute (ISI) of the University Of Southern California. I am very
grateful to Ewa Deelman for many fruitful discussions on the topics put for-
ward by this chapter. I would like to thank members of the Southern California
Earthquake Center and the ISI Machine Translation project for sharing with
us their challenging workflow problems. I also thank other members of the
Intelligent Systems Division and the Center for Grid Technologies at ISI.



1 Workflow Composition 15

References

1. K. Knight and D. Marcu. Machine Translation in the Year 2004. In Proceed-
ings of the 2005 IEEE International Conference on Acoustics, Speech, and Signal
Processing (ICASSP), volume 5, pages 965–968. IEEE Computer Society, New
York, 2005.

2. J. Kim, M. Spraragen, and Y. Gil. An Intelligent Assistant for Interactive Work-
flow Composition. In IUI ’04: Proceedings of the 9th international conference on
Intelligent user interface, pages 125–131. ACM Press, New York, January 2004.

3. P. Maechling, H. Chalupsky, M. Dougherty, E. Deelman, Y. Gil, S. Gullapalli,
V. Gupta, C. Kesselman, J. Kim, G. Mehta, B. Mendenhall, T. Russ, G. Singh,
M. Spraragen, G. Staples, and K. Vahi. Simplifying Construction of Complex
Workflows for Non-Expert Users of the Southern California Earthquake Center
Community Modeling Environment. ACM SIGMOD Record, 34(3):24–30, 2005.

4. S. Thakkar, J. L. Ambite, and C. A. Knoblock. Composing, Optimizing, and
Executing Plans for Bioinformatics Web services. VLDB Journal, Special Issue
on Data Management, Analysis and Mining for Life Sciences, 14(3):330–353,
2005.

5. D McDermott. Estimated-Regression Planning for Interactions with Web Ser-
vices. In Malik Ghallab, Joachim Hertzberg, and Paolo Traverso, editors, 6th In-
ternational Conference on Artificial Intelligence Planning and Scheduling. AAAI
Press, Menlo Park, CA, 2002.

6. S. McIlraith and T Son. Adapting Golog for Programming in the Semantic Web.
In Fifth International Symposium on Logical Formalizations of Commonsense
Reasoning, pages 195–202. In press, 2001.

7. OWL Web Ontology Language. http://www.w3.org/TR/owl-features/.


